lunes, 28 de noviembre de 2011

sábado, 26 de noviembre de 2011

Onda
.
Onda estacionaria formada por la interferencia entre una onda (azul) que avanza hacia la derecha y una onda (roja) que avanza hacia la izquierda.
En física, una onda es una propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal o el vacío.
La propiedad del medio en la que se observa la particularidad se expresa como una función tanto de la posición como del tiempo . Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:
donde v es la velocidad de propagación de la onda. Por ejemplo, ciertas perturbaciones de la presión de un medio, llamadas sonido, verifican la ecuación anterior, aunque algunas ecuaciones no lineales también tienen soluciones ondulatorias, por ejemplo, un solitón.
Definiciones
Una vibración puede finir las características necesarias y suficientes que caracterizan un fenómeno como onda es, como mínimo, algo flexible. El término suele ser entendido intuitivamente como el transporte de perturbaciones en el espacio, donde no se considera el espacio como un todo sino como un medio en el que pueden producirse y propagarse dichas perturbaciones a través de él. En una onda, la energía de una vibración se va alejando de la fuente en forma de una perturbación que se propaga en el medio circundante (Hall, 1980: 8). Sin embargo, esta noción es problemática en casos como una onda estacionaria (por ejemplo, una onda en una cuerda bajo ciertas condiciones) donde la transferencia de energía se propaga en ambas direcciones por igual, o para ondas electromagnéticas/luminosas en el vacío, donde el concepto de medio no puede ser aplicado.
Por tales razones, la teoría de ondas se conforma como una característica rama de la física que se ocupa de las propiedades de los fenómenos ondulatorios independientemente de cual sea su origen físico (Ostrovsky y Potapov, 1999). Una peculiaridad de estos fenómenos ondulatorios es que a pesar de que el estudio de sus características no depende del tipo de onda en cuestión, los distintos orígenes físicos que provocan su aparición les confieren propiedades muy particulares que las distinguen de unos fenómenos a otros. Por ejemplo, la acústica se diferencia de la óptica en que las ondas sonoras están relacionadas con aspectos más mecánicos que las ondas electromagnéticas (que son las que gobiernan los fenómenos ópticos). Conceptos tales como masa, cantidad de movimiento, inercia o elasticidad son conceptos importantes para describir procesos de ondas sonoras, a diferencia de en las ópticas, donde estas no tienen una especial relevancia. Por lo tanto, las diferencias en el origen o naturaleza de las ondas producen ciertas propiedades que caracterizan cada onda, manifestando distintos efectos en el medio en que se propagan (por ejemplo, en el caso del aire: vórtices, ondas de choque. En el caso de los sólidos: dispersión. En el caso del electromagnetismo presión de radiación.)
Elementos de una Onda
  • Cresta: La cresta es el punto más alto de dicha amplitud o punto máximo de saturación de la onda.
  • Período: El periodo es el tiempo que tarda la onda en ir de un punto de máxima amplitud al siguiente.
  • Amplitud: La amplitud es la distancia vertical entre una cresta y el punto medio de la onda. Nótese que pueden existir ondas cuya amplitud sea variable, es decir, crezca o decrezca con el paso del tiempo.
  • Frecuencia: Número de veces que es repetida dicha vibración. En otras palabras, es una simple repetición de valores por un período determinado.
  • Valle: Es el punto más bajo de una onda.
  • Longitud de onda: Distancia que hay entre dos crestas consecutivas de dicho tamaño.
Ejemplos de ondas:
Ondas gravitacionales, que son fluctuaciones en la curvatura del espacio-tiempo predichas por la relatividad general. Estas ondas aún no han sido observadas empíricamente.

MOVIMIENTO ONDULATORIO

ONDAS




domingo, 30 de octubre de 2011

VIDEO DE EJEMPLO DE TRABAJO

DEFINICIÓN TRABAJO

La expresión que define el trabajo es la siguiente:

W=F·d

Esa expresión indica con claridad que hay dos factores que tomar en cuenta al querer determinar el trabajo realizado. Uno es "F" que denota a la fuerza aplicada y que produce en el cuerpo el desplazamiento.

El otro factor es "d" y simboliza la distancia recorrida por el cuerpo en la dirección de la fuerza aplicada.

La unidad fundamental de trabajo es el joule y su símbolo es "J". El joule es el trabajo que se realiza cuando al aplicar una fuerza de un newton sobre un cuerpo se produce un desplazamiento de un metro. Al hacer la equivalencia de unidades se da la siguiente relación: joule=N·m

TRABAJO-ENERGIA

FOTOS DINAMICA




DINAMICA
Estudia el movimiento de los objetos y de su respuesta a las fuerzas. Las descripciones del movimiento comienzan con una definición cuidadosa de magnitudes como el desplazamiento, el tiempo, la velocidad, la aceleración, la masa y la fuerza.
Isaac Newton demostró que la velocidad de los objetos que caen aumenta continuamente durante su caída. Esta aceleración es la misma para objetos pesados o ligeros, siempre que no se tenga en cuenta la resistencia del aire (rozamiento). Newton mejoró este análisis al definir la fuerza y la masa, y relacionarlas con la aceleración.
Para los objetos que se desplazan a velocidades próximas a la velocidad de la luz, las leyes de Newton han sido sustituidas por la teoría de la relatividad de Albert Einstein. Para las partículas atómicas y subatómicas, las leyes de Newton han sido sustituidas por la teoría cuántica. Pero para los fenómenos de la vida diaria, las tres leyes del movimiento de Newton siguen siendo la piedra angular de la dinámica (el estudio de las causas del cambio en el movimiento).
Las leyes del movimiento de Newton
Con la formulación de las tres leyes del movimiento, Isaac Newton estableció las bases de la dinámica.
Primera ley de Newton (equilibrio)
Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la fuerza resultante es nula (ver condición de equilibrio).
El que la fuerza ejercida sobre un objeto sea cero no significa necesariamente que su velocidad sea cero. Si no está sometido a ninguna fuerza (incluido el rozamiento), un objeto en movimiento seguirá desplazándose a velocidad constante.
Para que haya equilibrio, las componentes horizontales de las fuerzas que actúan sobre un objeto deben cancelarse mutuamente, y lo mismo debe ocurrir con las componentes verticales. Esta condición es necesaria para el equilibrio, pero no es suficiente. Por ejemplo, si una persona coloca un libro de pie sobre una mesa y lo empuja igual de fuerte con una mano en un sentido y con la otra en el sentido opuesto, el libro permanecerá en reposo si las manos están una frente a otra. (El resultado total es que el libro se comprime). Pero si una mano está cerca de la parte superior del libro y la otra mano cerca de la parte inferior, el libro caerá sobre la mesa. Para que haya equilibrio también es necesario que la suma de los momentos en torno a cualquier eje sea cero. Los momentos dextrógiros (a derechas) en torno a todo eje deben cancelarse con los momentos levógiros (a izquierdas) en torno a ese eje. Puede demostrarse que si los momentos se cancelan para un eje determinado, se cancelan para todos los ejes. Para calcular la fuerza total, hay que sumar las fuerzas como vectores.
a) Condición de equilibrio en el plano: la sumatoria de todas las fuerzas aplicadas y no aplicadas debe ser nula y, la sumatoria de los momentos de todas las fuerzas con respecto a cualquier punto debe ser nula.
Σ Fx = 0
Σ Fy = 0
Σ MF = 0
b) Condición de equilibrio en el espacio: la sumatoria de todas las fuerzas aplicadas y no aplicadas debe ser nula y, la sumatoria de los momentos de todas las fuerzas con respecto a los tres ejes de referencia debe ser nula.
Equilibrio de fuerzas
Σ Fx = 0
Σ Fy = 0
Σ Fz = 0

Equilibrio de momentos
Σ My = 0
Σ Mx = 0
Σ Mz = 0
Segunda ley de Newton (masa)
Para entender cómo y por qué se aceleran los objetos, hay que definir la fuerza y la masa. Una fuerza neta ejercida sobre un objeto lo acelerará, es decir, cambiará su velocidad. La aceleración será proporcional a la magnitud de la fuerza total y tendrá la misma dirección y sentido que ésta. La constante de proporcionalidad es la masa m del objeto. La masa es la medida de la cantidad de sustancia de un cuerpo y es universal.
Cuando a un cuerpo de masa m se le aplica una fuerza F se produce una aceleración a.
F = m.a
Unidades: En el Sistema Internacional de unidades (SI), la aceleración a se mide en metros por segundo cuadrado, la masa m se mide en kilogramos, y la fuerza F en newtons.

Se define por el efecto que produce la aceleración en la fuerza a la cual se aplica. Un newton se define como la fuerza necesaria para suministrar a una masa de 1 kg una aceleración de 1 metro por segundo cada segundo.
Un objeto con más masa requerirá una fuerza mayor para una aceleración dada que uno con menos masa. Lo asombroso es que la masa, que mide la inercia de un objeto (su resistencia a cambiar la velocidad), también mide la atracción gravitacional que ejerce sobre otros objetos. Resulta sorprendente, y tiene consecuencias profundas, que la propiedad inercial y la propiedad gravitacional estén determinadas por una misma cosa. Este fenómeno supone que es imposible distinguir si un punto determinado está en un campo gravitatorio o en un sistema de referencia acelerado. Albert Einstein hizo de esto una de las piedras angulares de su teoría general de la relatividad, que es la teoría de la gravitación actualmente aceptada.
Se deduce que:
1 kgf = 9,81 N
En particular para la fuerza peso:
P = m.g
Tercera ley de Newton (acción y reacción)

Cuando a un cuerpo se le aplica una fuerza (acción o reacción), este devuelve una fuerza de igual magnitud, igual dirección y de sentido contrario (reacción o acción).
Por ejemplo, en una pista de patinaje sobre hielo, si un adulto empuja suavemente a un niño,no sólo existe la fuerza que el adulto ejerce sobre el niño, sino que el niño ejerce una fuerza igual pero de sentido opuesto sobre el adulto. Sin embargo, como la masa del adulto es mayor, su aceleración será menor.
La tercera ley de Newton también implica la conservación del momento lineal, el producto de la masa por la velocidad. En un sistema aislado, sobre el que no actúan fuerzas externas, el momento debe ser constante. En el ejemplo del adulto y el niño en la pista de patinaje, sus velocidades iniciales son cero, por lo que el momento inicial del sistema es cero. Durante la interacción operan fuerzas internas entre el adulto y el niño, pero la suma de las fuerzas externas es cero. Por tanto, el momento del sistema tiene que seguir siendo nulo. Después de que el adulto empuje al niño, el producto de la masa grande y la velocidad pequeña del adulto debe ser igual al de la masa pequeña y la velocidad grande del niño. Los momentos respectivos son iguales en magnitud pero de sentido opuesto, por lo que su suma es cero.
Otra magnitud que se conserva es el momento angular o cinético. El momento angular de un objeto en rotación depende de su velocidad angular, su masa y su distancia al eje. Cuando un patinador da vueltas cada vez más rápido sobre el hielo, prácticamente sin rozamiento, el momento angular se conserva a pesar de que la velocidad aumenta. Al principio del giro, el patinador tiene los brazos extendidos. Parte de la masa del patinador tiene por tanto un radio de giro grande. Cuando el patinador baja los brazos, reduciendo su distancia del eje de rotación, la velocidad angular debe aumentar para mantener constante el momento angular.
Un libro colocado sobre una mesa es atraído hacia abajo por la atracción gravitacional de la Tierra y es empujado hacia arriba por la repulsión molecular de la mesa. Como se ve se cumplen todas las leyes de Newton.

DINAMICA

miércoles, 5 de octubre de 2011

MOVIMIENTO PARABÓLICO

Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Se corresponde con la trayectoria ideal de un proyectil que se mueve en un medio que no ofrece resistencia al avance y que está sujeto a un campo gravitatorio uniforme.
Puede ser analizado como la composición de dos movimientos rectilíneos: un movimiento rectilíneo uniforme horizontal y un movimiento rectilíneo uniformemente acelerado vertical.

MOVIMIENTO PARABÓLICO

Movimiento parabólico

MOVIMIENTO PARABÓLICO


lunes, 26 de septiembre de 2011

CONCLUSIONES Y RECOMENDACIONES

LABORATORIO DE FÍSICA

CONCLUSIONES Y RECOMENDACIONES

TEORÍA DE CINEMÁTICA

teoria de cinematica

Laboratorio Nº 3

miércoles, 14 de septiembre de 2011

Vernier y Micrometro




VERNIER:

El vernier es uno de los instrumentos mecánicos para medición lineal de exteriores, medición de interiores y de profundidades más ampliamente utilizados. Se creé que la escala vernier fue inventado por un portugués llamado Petrus Nonius. El calibrador vernier actual fue desarrollado después, en 1631 por Pierre Vernier.
Las principales aplicaciones de un vernier estándar son comúnmente: medición de exteriores, de interiores, de profundidades y en algunos calibradores dependiendo del diseño medición de escalonamiento.


Micrometro:


El micrómetro (del griego micros, pequeño, y metros, medición), también llamado Tornillo de Palmer, es un instrumento de medición cuyo funcionamiento está basado en el tornillo micrométrico que sirve para medir con alta precisión del orden de centésimas de milímetros (0,01 mm) y de milésimas de milímetros (0,001mm) (micra) las dimensiones de un objeto.
Para ello cuenta con 2 puntas que se aproximan entre sí mediante un tornillo de rosca fina, el cual tiene grabado en su contorno una escala. La escala puede incluir un nonio.La máxima longitud de medida del micrómetro de exteriores es de 25 mm, por lo que es necesario disponer de un micrómetro para cada campo de medidas que se quieran tomar.